Yagi and Managi (2018, BSE)



Yagi, M. and Managi, S., “Decomposition Analysis of Corporate Carbon Dioxide and Greenhouse Gas Emissions in Japan: Integrating Corporate Environmental and Financial Performances,” Business Strategy and the Environment, Vol.27 (8), pp.1476-1492, 2018. doi: 10.1002/bse.2206





近年の実証的研究は、二酸化炭素(CO2)と温室効果ガス(GHG)排出量の観点から企業の環境パフォーマンス(CEP)と企業の財務パフォーマンス(CFP)との間の正の関係を裏付けることが多い。ただし、この関係はCEP(絶対および相対CEP)およびCFP(会計ベースおよび市場ベースのCFP)の測定に依存する。この関係を構造的に理解するために、文献に基づいて、本研究はCO2とGHG排出量と経済的要因を統合する恒等式モデルを提案する。このモデルは、CO2(GHG)排出量を、炭素原単位(GHG原単位)、エネルギー原単位、売上原価率、総資産回転率(TATR)、レバレッジ、および株主資本に分解する。サプライチェーンGHG排出量のモデルは、さらにサプライチェーンGHG強度を採用する。分解法として、本研究では対数平均ディビジア指数(LMDI)を使用する。CO2モデルの適用例として、2011年度から2015年度までの16セクターの日本の製造業企業を対象とする。推計結果として、2015年時点のCO2排出量の変化(-802.1キロトン[kt])は次のように分解される(炭素原単位:2922.5 kt、エネルギー原単位:-26036.3 kt、売上原価率:-6350.5 kt、TATR:-8495.6 kt、レバレッジ:-7912.3 kt、株主資本:45070.1 kt)。相対寄与率の平均値は、炭素原単位が20.6%でエネルギー原単位が19.1%であり、残りの約60%が経済的要因である。 2015年の時点で、16のセクターのうち、総CO2排出量の変化は、株主資本に対して統計的に有意に正の関係があり、TATRおよびレバレッジに対して有意に負の関係がある一方で、炭素強度とエネルギー強度、および売上原価比率は有意な関係が見られなかった。

Recent empirical studies often support the positive relationship between corporate environmental performance (CEP) in terms of carbon dioxide (CO2) and greenhouse gas (GHG) emissions and corporate financial performance (CFP). However, this depends on the measurements of CEP (the absolute and relative CEP) and CFP (accounting-based and market-based CFP). To understand the relationship structurally, based on the literature, this study proposes identity models that integrate CO2 and GHG emissions and financial factors. The models decompose CO2 (GHG) emissions into carbon intensity (GHG intensity), energy intensity, the cost-to-sales ratio, the total-assets-turnover ratio (TATR), leverage, and equity. The model of supply-chain GHG emissions additionally adopts supply-chain GHG intensity. As a decomposition method, this study uses the log-mean Divisia index (LMDI). As an application example of the carbon dioxide model, this study targets Japanese manufacturing firms in 16 sectors from fiscal years (FY) 2011 to 2015. Results show that the change in CO2 emissions as of 2015 (−802.1 kilotonnes [kt]) is decomposed into 2922.5 kt for carbon intensity, −26036.3 kt for energy intensity, −6350.5 kt for the cost-to-sales ratio, −8495.6 kt for the TATR, −7912.3 kt for leverage, and 45070.1 kt for equity. Average values of relative contribution ratios are 20.6% for carbon intensity, 19.1% for energy intensity, and the remaining approximately 60% for financial factors. Among the 16 sectors, as of 2015, the change in total CO2 emission is statistically significantly positive for equity and significantly negative for the TATR and leverage, and it is not significantly correlated to the carbon intensity, the energy intensity, and the cost-to-sales ratio.


  • Aguinis, H., Glavas, A., 2012. What We Know and Don’t Know About Corporate Social Responsibility. Journal of Management 38, 932–968. doi:10.11770149206311436079
  • Ang, B.W., 2004. Decomposition analysis for policymaking in energy: Energy Policy 32, 1131–1139. doi:10.1016/S0301-4215(03)00076-4
  • Ang, B.W., 2015. LMDI decomposition approach: A guide for implementation. Energy Policy 86, 233–238. doi:10.1016/j.enpol.2015.07.007
  • Ang, B.W., Zhang, F.Q., 2000. A survey of index decomposition analysis in energy and environmental studies. Energy 25, 1149–1176. doi:10.1016/S0360-5442(00)00039-6
  • Asian Productivity Organization (APO), 2014. Manual on Material Flow Cost Accounting: ISO 14051, Asian Productivity Organization, Japan. http://www.apo-tokyo.org/publications/wp-content/uploads/sites/5/Manual_on_Material_Flow_Cost_Accounting_ISO14051-2014.pdf (accessed Apr. 2018).
  • Bierer, A., Götze, U., Meynerts, L., Sygulla, R., 2015. Integrating life cycle costing and life cycle assessment using extended material flow cost accounting. Journal of Cleaner Production 108, 1289–1301. doi:10.1016/j.jclepro.2014.08.036
  • Busch, T., Hoffmann, V.H., 2011. How Hot Is Your Bottom Line? Linking Carbon and Financial Performance. Business & Society 50, 233–265. doi:10.11770007650311398780
  • Busch, T., Lewandowski, S., 2017. Corporate Carbon and Financial Performance: A Meta-analysis. Journal of Industrial Ecology 0, 1–15. doi:10.1111/jiec.12591
  • Cansino, J.M., Sánchez-Braza, A., Rodríguez-Arévalo, M.L., 2015. Driving forces of Spain’s CO2 emissions: A LMDI decomposition approach. Renewable and Sustainable Energy Reviews 48, 749–759. doi:10.1016/j.rser.2015.04.011
  • Capece, G., Di Pillo, F., Gastaldi, M., Levialdi, N., Miliacca, M., 2017. Examining the effect of managing GHG emissions on business performance. Business Strategy and the Environment 26, 1041–1060. doi:10.1002/bse.1956
  • Carroll, A.B., Shabana, K.M., 2010. The business case for corporate social responsibility: A review of concepts, research and practice. International Journal of Management Reviews 12, 85–105. doi:10.1111/j.1468-2370.2009.00275.x
  • Chapman, A., Fujii, H., Managi, S., 2018. Key Drivers for Cooperation toward Sustainable Development and the Management of CO2 Emissions: Comparative Analysis of Six Northeast Asian Countries. Sustainability 10, 244. doi:10.3390/su10010244
  • Chong, C., Ma, L., Li, Z., Ni, W., Song, S., 2015. Logarithmic mean Divisia index (LMDI) decomposition of coal consumption in China based on the energy allocation diagram of coal flows. Energy 85, 366–378. doi:10.1016/j.energy.2015.03.100
  • Christ, K.L., Burritt, R.L., 2015. Material flow cost accounting: a review and agenda for future research. Journal of Cleaner Production 108, 1378–1389. doi:10.1016/j.jclepro.2014.09.005
  • Delmas, M.A., Nairn-Birch, N., Lim, J., 2015. Dynamics of Environmental and Financial Performance. Organization & Environment 28, 374–393. doi:10.11771086026615620238
  • Fire and Disaster Management Agency of the Ministry of Internal Affairs and Communications, 2018, Report on The Great East Japan Earthquake in H23 (2011) (157th) [Japanese]. http://www.fdma.go.jp/bn/higaihou/pdf/jishin/157.pdf (accessed Apr. 2018).
  • Fujii, H., 2016. Decomposition analysis of green chemical technology inventions from 1971 to 2010 in Japan. Journal of Cleaner Production 112, 4835–4843. doi:10.1016/j.jclepro.2015.07.123
  • Fujii, H., Iwata, K., Kaneko, S., Managi, S., 2013. Corporate Environmental and Economic Performance of Japanese Manufacturing Firms: Empirical Study for Sustainable Development. Business Strategy and the Environment 22, 187–201. doi:10.1002/bse.1747
  • Fujii, H., Managi, S., 2016. Research and development strategy for environmental technology in Japan: A comparative study of the private and public sectors. Technological Forecasting and Social Change 112, 293–302. doi:10.1016/j.techfore.2016.02.012
  • Fujii, H., Yoshida, K., Sugimura, K., 2016. Research and Development Strategy in Biological Technologies: A Patent Data Analysis of Japanese Manufacturing Firms. Sustainability 8, 351. doi:10.3390/su8040351
  • Fujii, H., Okamoto, S., Kagawa, S., Managi, S., 2017. Decomposition of toxicity emission changes on the demand and supply sides: empirical study of the US industrial sector. Environmental Research Letters 12, 124008. doi:10.10881748-9326/aa9c66
  • Guenther, E., Jasch, C., Schmidt, M., Wagner, B., Ilg, P., 2015. Material Flow Cost Accounting – looking back and ahead. Journal of Cleaner Production 108, 1249–1254. doi:10.1016/j.jclepro.2015.10.018
  • Griffin, J.J., Mahon, J.F., 1997. The Corporate Social Performance and Corporate Financial Performance Debate. Business & Society 36, 5–31. doi:10.1177000765039703600102
  • Hatakeda, T., Kokubu, K., Kajiwara, T., Nishitani, K., 2012. Factors Influencing Corporate Environmental Protection Activities for Greenhouse Gas Emission Reductions: The Relationship Between Environmental and Financial Performance. Environmental and Resource Economics 53, 455–481. doi:10.1007/s10640-012-9571-5
  • Hayashi, T., 2012. Japan’s Post-Disaster Economic Reconstruction: From Kobe to Tohoku. Asian Economic Journal 26, 189–210. doi:10.1111/j.1467-8381.2012.02082.x
  • Hayes, G.P., Myers, E.K., Dewey, J.W., Briggs, R.W., Earle, P.S., Benz, H.M., Smoczyk, G.M., Flamme, H.E., Barnhart, W.D., Gold, R.D., Furlong, K.P., 2017. Tectonic summaries of magnitude 7 and greater earthquakes from 2000 to 2015, U.S. Geological Survey Open-File Report 2016–1192. doi:10.3133/ofr20161192
  • ISO, 2011. ISO 14051:2011(en) Environmental management — Material flow cost accounting — General framework. https://www.iso.org/obp/ui/#iso:std:iso:14051:ed-1:v1:en
  • ISO, 2017. ISO 14052:2017(en) Environmental management — Material flow cost accounting — Guidance for practical implementation in a supply chain. https://www.iso.org/obp/ui/#iso:std:iso:14052:ed-1:v1:en
  • Kaya, Y., Yokobori, K., 1998. Environment, Energy, and Economy Strategies for Sustainability. Tokyo: United Nations University Press.
  • Kokubu, K., Kitada, H., 2015. Material flow cost accounting and existing management perspectives. Journal of Cleaner Production 108, 1279–1288. doi:10.1016/j.jclepro.2014.08.037
  • Kwon, D.S., Cho, J.H., Sohn, S.Y., 2017. Comparison of technology efficiency for CO2 emissions reduction among European countries based on DEA with decomposed factors. Journal of Cleaner Production 151, 109–120. doi:10.1016/j.jclepro.2017.03.065
  • Managi, S., Guan, D., 2017. Multiple disasters management: Lessons from the Fukushima triple events. Economic Analysis and Policy 53, 114–122. doi:10.1016/j.eap.2016.12.002
  • Margolis, J.D., Walsh, J.P., 2003. Misery Loves Companies: Rethinking Social Initiatives by Business. Administrative Science Quarterly 48, 268. doi:10.23073556659
  • Nishitani, K., Kaneko, S., Komatsu, S., Fujii, H., 2014. How does a firm’s management of greenhouse gas emissions influence its economic performance? Analyzing effects through demand and productivity in Japanese manufacturing firms. Journal of Productivity Analysis 42, 355–366. doi:10.1007/s11123-014-0388-9
  • Raupach, M.R., Marland, G., Ciais, P., Le Quere, C., Canadell, J.G., Klepper, G., Field, C.B., 2007. Global and regional drivers of accelerating CO2 emissions. Proceedings of the National Academy of Sciences 104, 10288–10293. doi:10.1073/pnas.0700609104
  • Rieckhof, R., Bergmann, A., Guenther, E., 2015. Interrelating material flow cost accounting with management control systems to introduce resource efficiency into strategy. Journal of Cleaner Production 108, 1262–1278. doi:10.1016/j.jclepro.2014.10.040
  • Roman, R.M., Hayibor, S., Agle, B.R., 1999. The Relationship between Social and Financial Performance. Business & Society 38, 109–125. doi:10.1177000765039903800105
  • Schaltegger, S., Zvezdov, D., 2015. Expanding material flow cost accounting. Framework, review and potentials. Journal of Cleaner Production 108, 1333–1341. doi:10.1016/j.jclepro.2014.08.040
  • Su, B., Ang, B.W., 2012. Structural decomposition analysis applied to energy and emissions: Some methodological developments. Energy Economics 34, 177–188. doi:10.1016/j.eneco.2011.10.009
  • Wagner, B., 2015. A report on the origins of Material Flow Cost Accounting (MFCA) research activities. Journal of Cleaner Production 108, 1255–1261. doi:10.1016/j.jclepro.2015.10.020
  • Wang, L., Li, S., Gao, S., 2014a. Do Greenhouse Gas Emissions Affect Financial Performance? - an Empirical Examination of Australian Public Firms. Business Strategy and the Environment 23, 505–519. doi:10.1002/bse.1790
  • Wang, W., Liu, X., Zhang, M., Song, X., 2014b. Using a new generalized LMDI (logarithmic mean Divisia index) method to analyze China’s energy consumption. Energy 67, 617–622. doi:10.1016/j.energy.2013.12.064
  • World Resources Institute (WRI) and World Business Council for Sustainable Development (WBCSD), 2004. The Greenhouse Gas Protocol - A Corporate Accounting and Reporting Standard (Revised edition). http://www.ghgprotocol.org/sites/default/files/ghgp/standards/ghg-protocol-revised.pdf (accessed Mar. 2018).
  • World Resources Institute (WRI) and World Business Council for Sustainable Development (WBCSD), 2011. The Greenhouse Gas Protocol - Corporate Value Chain (Scope 3) Accounting and Reporting: Supplement to the GHG Protocol Corporate Accounting and Reporting Standard. http://www.ghgprotocol.org/standards/scope-3-standard (accessed Mar. 2018).
TOP page (日本語)